vol. 25:2


1. Resynchronized Uniformization and Definability Problems for Rational Relations

Christof Löding ; Sarah Winter.
Regular synchronization languages can be used to define rational relations of finite words, and to characterize subclasses of rational relations, like automatic or recognizable relations. We provide a systematic study of the decidability of uniformization and definability problems for subclasses of rational relations defined in terms of such synchronization languages. We rephrase known results in this setting and complete the picture by adding several new decidability and undecidability results.
Section: Automata, Logic and Semantics

2. Antisquares and Critical Exponents

Aseem Baranwal ; James Currie ; Lucas Mol ; Pascal Ochem ; Narad Rampersad ; Jeffrey Shallit.
The (bitwise) complement $\overline{x}$ of a binary word $x$ is obtained by changing each $0$ in $x$ to $1$ and vice versa. An $\textit{antisquare}$ is a nonempty word of the form $x\, \overline{x}$. In this paper, we study infinite binary words that do not contain arbitrarily large antisquares. For example, we show that the repetition threshold for the language of infinite binary words containing exactly two distinct antisquares is $(5+\sqrt{5})/2$. We also study repetition thresholds for related classes, where "two" in the previous sentence is replaced by a larger number. We say a binary word is $\textit{good}$ if the only antisquares it contains are $01$ and $10$. We characterize the minimal antisquares, that is, those words that are antisquares but all proper factors are good. We determine the growth rate of the number of good words of length $n$ and determine the repetition threshold between polynomial and exponential growth for the number of good words.
Section: Combinatorics

3. Maker-Breaker domination game on trees when Staller wins

Csilla Bujtás ; Pakanun Dokyeesun ; Sandi Klavžar.
In the Maker-Breaker domination game played on a graph $G$, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Staller) starts the game, then $\gamma_{\rm SMB}(G)$ (resp., $\gamma_{\rm SMB}'(G)$) denotes the minimum number of moves Staller needs to win. For every positive integer $k$, trees $T$ with $\gamma_{\rm SMB}'(T)=k$ are characterized and a general upper bound on $\gamma_{\rm SMB}'$ is proved. Let $S = S(n_1,\dots, n_\ell)$ be the subdivided star obtained from the star with $\ell$ edges by subdividing its edges $n_1-1, \ldots, n_\ell-1$ times, respectively. Then $\gamma_{\rm SMB}'(S)$ is determined in all the cases except when $\ell\ge 4$ and each $n_i$ is even. The simplest formula is obtained when there are at least two odd $n_i$s. If $n_1$ and $n_2$ are the two smallest such numbers, then $\gamma_{\rm SMB}'(S(n_1,\dots, n_\ell))=\lceil \log_2(n_1+n_2+1)\rceil$. For caterpillars, exact formulas for $\gamma_{\rm SMB}$ and for $\gamma_{\rm SMB}'$ are established.
Section: Graph Theory