vol. 23 no. 1

1. Determining Genus From Sandpile Torsor Algorithms

McDonough, Alex.
We provide a pair of ribbon graphs that have the same rotor routing and Bernardi sandpile torsors, but different topological genus. This resolves a question posed by M. Chan [Cha]. We also show that if we are given a graph, but not its ribbon structure, along with the rotor routing sandpile torsors, we are able to determine the ribbon graph's genus.

2. Efficient enumeration of non-isomorphic interval graphs

Mikos, Patryk.
Recently, Yamazaki et al. provided an algorithm that enumerates all non-isomorphic interval graphs on $n$ vertices with an $O(n^4)$ time delay. In this paper, we improve their algorithm and achieve $O(n^3 \log n)$ time delay. We also extend the catalog of these graphs providing a list of all non-isomorphic interval graphs for all $n$ up to $15$.

3. Wiener Index and Remoteness in Triangulations and Quadrangulations

Czabarka, Éva ; Dankelmann, Peter ; Olsen, Trevor ; Székely, László A..
Let $G$ be a a connected graph. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide asymptotic formulae for the maximum Wiener index of simple triangulations and quadrangulations with given connectivity, as the order increases, and make conjectures for the extremal triangulations and quadrangulations based on computational evidence. If $\overline{\sigma}(v)$ denotes the arithmetic mean of the distances from $v$ to all other vertices of $G$, then the remoteness of $G$ is defined as the largest value of $\overline{\sigma}(v)$ over all vertices $v$ of $G$. We give sharp upper bounds on the remoteness of simple triangulations and quadrangulations of given order and connectivity.

4. On BMRN*-colouring of planar digraphs

Bensmail, Julien ; Fioravantes, Foivos.
In a recent work, Bensmail, Blanc, Cohen, Havet and Rocha, motivated by applications for TDMA scheduling problems, have introduced the notion of BMRN*-colouring of digraphs, which is a type of arc-colouring with particular colouring constraints. In particular, they gave a special focus to planar digraphs. They notably proved that every planar digraph can be 8-BMRN*-coloured, while there exist planar digraphs for which 7 colours are needed in a BMRN*-colouring. They also proved that the problem of deciding whether a planar digraph can be 3-BMRN*-coloured is NP-hard. In this work, we pursue these investigations on planar digraphs, in particular by answering some of the questions left open by the authors in that seminal work. We exhibit planar digraphs needing 8 colours to be BMRN*-coloured, thus showing that the upper bound of Bensmail, Blanc, Cohen, Havet and Rocha cannot be decreased in general. We also generalize their complexity result by showing that the problem of deciding whether a planar digraph can be k-BMRN*-coloured is NP-hard for every k ∈ {3,...,6}. Finally, we investigate the connection between the girth of a planar digraphs and the least number of colours in its BMRN*-colourings.

5. Anti-power $j$-fixes of the Thue-Morse word

Gaetz, Marisa.
Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of a $k$-anti-power, which is defined as a word of the form $w^{(1)} w^{(2)} \cdots w^{(k)}$, where $w^{(1)}, w^{(2)}, \ldots, w^{(k)}$ are distinct words of the same length. For an infinite word $w$ and a positive integer $k$, define $AP_j(w,k)$ to be the set of all integers $m$ such that $w_{j+1} w_{j+2} \cdots w_{j+km}$ is a $k$-anti-power, where $w_i$ denotes the $i$-th letter of $w$. Define also $\mathcal{F}_j(k) = (2 \mathbb{Z}^+ - 1) \cap AP_j(\mathbf{t},k)$, where $\mathbf{t}$ denotes the Thue-Morse word. For all $k \in \mathbb{Z}^+$, $\gamma_j(k) = \min (AP_j(\mathbf{t},k))$ is a well-defined positive integer, and for $k \in \mathbb{Z}^+$ sufficiently large, $\Gamma_j(k) = \sup ((2 \mathbb{Z}^+ -1) \setminus \mathcal{F}_j(k))$ is a well-defined odd positive integer. In his 2018 paper, Defant shows that $\gamma_0(k)$ and $\Gamma_0(k)$ grow linearly in $k$. We generalize Defant's methods to prove that $\gamma_j(k)$ and $\Gamma_j(k)$ grow linearly in $k$ for any nonnegative integer $j$. In particular, we show that $\displaystyle 1/10 \leq \liminf_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 9/10$ and $\displaystyle 1/5 \leq \limsup_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 3/2$. Additionally, we show that $\displaystyle \liminf_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3/2$ and $\displaystyle \limsup_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3$.

6. On the existence and non-existence of improper homomorphisms of oriented and $2$-edge-coloured graphs to reflexive targets

Duffy, Christopher ; Shan, Sonja Linghui.
We consider non-trivial homomorphisms to reflexive oriented graphs in which some pair of adjacent vertices have the same image. Using a notion of convexity for oriented graphs, we study those oriented graphs that do not admit such homomorphisms. We fully classify those oriented graphs with tree-width $2$ that do not admit such homomorphisms and show that it is NP-complete to decide if a graph admits an orientation that does not admit such homomorphisms. We prove analogous results for $2$-edge-coloured graphs. We apply our results on oriented graphs to provide a new tool in the study of chromatic number of orientations of planar graphs -- a long-standing open problem.

7. Exponential multivalued forbidden configurations

Dillon, Travis ; Sali, Attila.
The forbidden number $\mathrm{forb}(m,F)$, which denotes the maximum number of unique columns in an $m$-rowed $(0,1)$-matrix with no submatrix that is a row and column permutation of $F$, has been widely studied in extremal set theory. Recently, this function was extended to $r$-matrices, whose entries lie in $\{0,1,\dots,r-1\}$. The combinatorics of the generalized forbidden number is less well-studied. In this paper, we provide exact bounds for many $(0,1)$-matrices $F$, including all $2$-rowed matrices when $r > 3$. We also prove a stability result for the $2\times 2$ identity matrix. Along the way, we expose some interesting qualitative differences between the cases $r=2$, $r = 3$, and $r > 3$.