DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)

1. Partition and composition matrices: two matrix analogues of set partitions

Claesson, Anders ; Dukes, Mark ; Kubitzke, Martina.
This paper introduces two matrix analogues for set partitions; partition and composition matrices. These two analogues are the natural result of lifting the mapping between ascent sequences and integer matrices given in Dukes & Parviainen (2010). We prove that partition matrices are in one-to-one correspondence with inversion tables. Non-decreasing inversion tables are shown to correspond to partition matrices with a row ordering relation. Partition matrices which are s-diagonal are classified in terms of inversion tables. Bidiagonal partition matrices are enumerated using the transfer-matrix method and are equinumerous with permutations which are sortable by two pop-stacks in parallel. We show that composition matrices on the set $X$ are in one-to-one correspondence with (2+2)-free posets on $X$.We show that pairs of ascent sequences and permutations are in one-to-one correspondence with (2+2)-free posets whose elements are the cycles of a permutation, and use this relation to give an expression for the number of (2+2)-free posets on $\{1,\ldots,n\}$.
Section: Proceedings

2. Lagrange's Theorem for Hopf Monoids in Species

Aguiar, Marcelo ; Lauve, Aaron.
We prove Lagrange's theorem for Hopf monoids in the category of connected species. We deduce necessary conditions for a given subspecies $\textrm{k}$ of a Hopf monoid $\textrm{h}$ to be a Hopf submonoid: each of the generating series of $\textrm{k}$ must divide the corresponding generating series of $\textrm{k}$ in ℕ〚x〛. Among other corollaries we obtain necessary inequalities for a sequence of nonnegative integers to be the sequence of dimensions of a Hopf monoid. In the set-theoretic case the inequalities are linear and demand the non negativity of the binomial transform of the sequence.
Section: Proceedings

3. Gelfand―Tsetlin Polytopes and Feigin―Fourier―Littelmann―Vinberg Polytopes as Marked Poset Polytopes

Ardila, Federico ; Bliem, Thomas ; Salazar, Dido.
Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950) and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras.
Section: Proceedings

4. Hyperplane Arrangements and Diagonal Harmonics

Armstrong, Drew.
In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions.
Section: Proceedings

5. The Shi arrangement and the Ish arrangement

Armstrong, Drew ; Rhoades, Brendon.
This paper is about two arrangements of hyperplanes. The first — the Shi arrangement — was introduced by Jian-Yi Shi to describe the Kazhdan-Lusztig cells in the affine Weyl group of type A. The second — the Ish arrangement — was recently defined by the first author who used the two arrangements together to give a new interpretation of the q,t-Catalan numbers of Garsia and Haiman. In the present paper we will define a mysterious "combinatorial symmetry'' between the two arrangements and show that this symmetry preserves a great deal of information. For example, the Shi and Ish arrangements share the same characteristic polynomial, the same numbers of regions, bounded regions, dominant regions, regions with c "ceilings'' and d "degrees of freedom'', etc. Moreover, all of these results hold in the greater generality of "deleted'' Shi and Ish arrangements corresponding to an arbitrary subgraph of the complete graph. Our proofs are based on nice combinatorial labellings of Shi and Ish regions and a new set partition-valued statistic on these regions.
Section: Proceedings

6. Tree-like tableaux

Aval, Jean-Christophe ; Boussicault, Adrien ; Nadeau, Philippe.
In this work we introduce and study tree-like tableaux, which are certain fillings of Ferrers diagrams in simple bijection with permutation tableaux and alternative tableaux. We exhibit an elementary insertion procedure on our tableaux which gives a clear proof that tableaux of size n are counted by n!, and which moreover respects most of the well-known statistics studied originally on alternative and permutation tableaux. Our insertion procedure allows to define in particular two simple new bijections between tree-like tableaux and permutations: the first one is conceived specifically to respect the generalized pattern 2-31, while the second one respects the underlying tree of a tree-like tableau.
Section: Proceedings

7. The # product in combinatorial Hopf algebras

Aval, Jean-Christophe ; Novelli, Jean-Christophe ; Thibon, Jean-Yves.
We show that the # product of binary trees introduced by Aval and Viennot (2008) is in fact defined at the level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras.
Section: Proceedings

8. Powers of the Vandermonde determinant, Schur functions, and the dimension game

Ballantine, Cristina.
Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left.
Section: Proceedings

9. The Murnaghan―Nakayama rule for k-Schur functions

Bandlow, Jason ; Schilling, Anne ; Zabrocki, Mike.
We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene.
Section: Proceedings

10. On the enumeration of column-convex permutominoes

Beaton, Nicholas R. ; Disanto, Filippo ; Guttmann, Anthony J. ; Rinaldi, Simone.
We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex permutominoes, and conjecture its asymptotic behavior using numerical analysis.
Section: Proceedings

11. Primitive orthogonal idempotents for R-trivial monoids

Berg, Chris ; Bergeron, Nantel ; Bhargava, Sandeep ; Saliola, Franco.
We construct a recursive formula for a complete system of primitive orthogonal idempotents for any R-trivial monoid. This uses the newly proved equivalence between the notions of R-trivial monoid and weakly ordered monoid.
Section: Proceedings

12. Deformed diagonal harmonic polynomials for complex reflection groups

Bergeron, François ; Borie, Nicolas ; Thiéry, Nicolas M..
We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version.
Section: Proceedings

13. Enumerating projective reflection groups

Biagioli, Riccardo ; Caselli, Fabrizio.
Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r,p,s,n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r,p,n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r,p,s,n), and we compute several generating functions concerning these parameters. Some aspects of the representation theory of G(r,p,s,n), as distribution of one-dimensional characters and computation of Hilbert series of some invariant algebras, are also treated.
Section: Proceedings

14. Finite Eulerian posets which are binomial or Sheffer

Bidkhori, Hoda.
In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals.
Section: Proceedings

15. Rational smoothness and affine Schubert varieties of type A

Billey, Sara ; Crites, Andrew.
The study of Schubert varieties in G/B has led to numerous advances in algebraic combinatorics and algebraic geometry. These varieties are indexed by elements of the corresponding Weyl group, an affine Weyl group, or one of their parabolic quotients. Often times, the goal is to determine which of the algebraic and topological properties of the Schubert variety can be described in terms of the combinatorics of its corresponding Weyl group element. A celebrated example of this occurs when G/B is of type A, due to Lakshmibai and Sandhya. They showed that the smooth Schubert varieties are precisely those indexed by permutations that avoid the patterns 3412 and 4231. Our main result is a characterization of the rationally smooth Schubert varieties corresponding to affine permutations in terms of the patterns 4231 and 3412 and the twisted spiral permutations.
Section: Proceedings

16. A tight colored Tverberg theorem for maps to manifolds (extended abstract)

Blagojević, Pavle V. M. ; Matschke, Benjamin ; Ziegler, Günter M..
Any continuous map of an $N$-dimensional simplex $Δ _N$ with colored vertices to a $d$-dimensional manifold $M$ must map $r$ points from disjoint rainbow faces of $Δ _N$ to the same point in $M$, assuming that $N≥(r-1)(d+1)$, no $r$ vertices of $Δ _N$ get the same color, and our proof needs that $r$ is a prime. A face of $Δ _N$ is called a rainbow face if all vertices have different colors. This result is an extension of our recent "new colored Tverberg theorem'', the special case of $M=ℝ^d$. It is also a generalization of Volovikov's 1996 topological Tverberg theorem for maps to manifolds, which arises when all color classes have size 1 (i.e., without color constraints); for this special case Volovikov's proofs, as well as ours, work when r is a prime power.
Section: Proceedings

17. Shortest path poset of Bruhat intervals

Blanco, Saúl A..
Let $[u,v]$ be a Bruhat interval and $B(u,v)$ be its corresponding Bruhat graph. The combinatorial and topological structure of the longest $u-v$ paths of $B(u,v)$ has been extensively studied and is well-known. Nevertheless, not much is known of the remaining paths. Here we describe combinatorial properties of the shortest $u-v$ paths of $B(u,v)$. We also derive the non-negativity of some coefficients of the complete mcd-index of $[u,v]$.
Section: Proceedings

18. Relative Node Polynomials for Plane Curves

Block, Florian.
We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined ``relative node polynomial'' in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ , and use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ .
Section: Proceedings

19. Arc Spaces and Rogers-Ramanujan Identities

Bruschek, Clemens ; Mourtada, Hussein ; Schepers, Jan.
Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts.
Section: Proceedings

20. Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$

Clearman, Sam ; Shelton, Brittany ; Skandera, Mark.
Let $χ ^λ$ be the irreducible $S_n$-character corresponding to the partition $λ$ of $n$, equivalently, the preimage of the Schur function $s_λ$ under the Frobenius characteristic map. Let $\phi ^λ$ be the function $S_n →ℂ$ which is the preimage of the monomial symmetric function $m_λ$ under the Frobenius characteristic map. The irreducible character immanant $Imm_λ {(x)} = ∑_w ∈S_n χ ^λ (w) x_1,w_1 ⋯x_n,w_n$ evaluates nonnegatively on each totally nonnegative matrix $A$. We provide a combinatorial interpretation for the value $Imm_λ (A)$ in the case that $λ$ is a hook partition. The monomial immanant $Imm_{{\phi} ^λ} (x) = ∑_w ∈S_n φ ^λ (w) x_1,w_1 ⋯x_n,w_n$ is conjectured to evaluate nonnegatively on each totally nonnegative matrix $A$. We confirm this conjecture in the case that $λ$ is a two-column partition by providing a combinatorial interpretation for the value $Imm_{{\phi} ^λ} (A)$.
Section: Proceedings

21. Statistics on staircase tableaux, eulerian and mahonian statistics

Corteel, Sylvie ; Dasse-Hartaut, Sandrine.
We give a simple bijection between some staircase tableaux and tables of inversion. Some nice properties of the bijection allows us to define some q-Eulerian polynomials related to the staircase tableaux. We also give a combinatorial interpretation of these q-Eulerian polynomials in terms of permutations.
Section: Proceedings

22. Polynomial functions on Young diagrams arising from bipartite graphs

Dolęga, Maciej ; Sniady, Piotr.
We study the class of functions on the set of (generalized) Young diagrams arising as the number of embeddings of bipartite graphs. We give a criterion for checking when such a function is a polynomial function on Young diagrams (in the sense of Kerov and Olshanski) in terms of combinatorial properties of the corresponding bipartite graphs. Our method involves development of a differential calculus of functions on the set of generalized Young diagrams.
Section: Proceedings

23. Critical Groups of Simplicial Complexes

Duval, Art M. ; Klivans, Caroline J. ; Martin, Jeremy L..
We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups.
Section: Proceedings

24. The topology of restricted partition posets

Ehrenborg, Richard ; Jung, JiYoon.
For each composition $\vec{c}$ we show that the order complex of the poset of pointed set partitions $Π ^• _{\vec{c}}$ is a wedge of $β\vec{c}$ spheres of the same dimensions, where $β\vec{c}$ is the number of permutations with descent composition ^$\vec{c}$. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module $S^B$ where $B$ is a border strip associated to the composition $\vec{c}$. We also study the filter of pointed set partitions generated by a knapsack integer partitions and show the analogous results on homotopy type and action on the top homology.
Section: Proceedings

25. Allowed patterns of β -shifts

Elizalde, Sergi.
For a real number $β >1$, we say that a permutation $π$ of length $n$ is allowed (or realized) by the $β$-shift if there is some $x∈[0,1]$ such that the relative order of the sequence $x,f(x),\ldots,f^n-1(x)$, where $f(x)$ is the fractional part of $βx$, is the same as that of the entries of $π$ . Widely studied from such diverse fields as number theory and automata theory, $β$-shifts are prototypical examples of one-dimensional chaotic dynamical systems. When $β$ is an integer, permutations realized by shifts have been recently characterized. In this paper we generalize some of the results to arbitrary $β$-shifts. We describe a method to compute, for any given permutation $π$ , the smallest $β$ such that $π$ is realized by the $β$-shift.
Section: Proceedings

26. Polytopes from Subgraph Statistics

Engström, Alexander ; Norén, Patrik.
We study polytopes that are convex hulls of vectors of subgraph densities. Many graph theoretical questions can be expressed in terms of these polytopes, and statisticians use them to understand exponential random graph models. Relations among their Ehrhart polynomials are described, their duals are applied to certify that polynomials are non-negative, and we find some of their faces. For the general picture we inscribe cyclic polytopes in them and calculate volumes. From the volume calculations we conjecture that a variation of the Selberg integral indexed by Schur polynomials has a combinatorial formula. We inscribe polynomially parametrized sets, called curvy zonotopes, in the polytopes and show that they approximate the polytopes arbitrarily close.
Section: Proceedings

27. Dual combinatorics of zonal polynomials

Féray, Valentin ; Sniady, Piotr.
In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments on irreducible character values of symmetric groups. The existence of such formulas could have been predicted from the work of M. Lassalle who formulated two positivity conjectures for Jack characters, which we prove in the special case of zonal polynomials.
Section: Proceedings

28. A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functions

Ferreira, Jeffrey.
We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of row-strict quasisymmetric Schur functions.
Section: Proceedings

29. K-classes for matroids and equivariant localization

Fink, Alex ; Speyer, David.
To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such classes under direct sum, series and parallel connection and two-sum; these results were previously only established for realizable matroids, and their earlier proofs were more difficult.
Section: Proceedings

30. Counting Shi regions with a fixed separating wall

Fishel, Susanna ; Tzanaki, Eleni ; Vazirani, Monica.
Athanasiadis introduced separating walls for a region in the extended Shi arrangement and used them to generalize the Narayana numbers. In this paper, we fix a hyperplane in the extended Shi arrangement for type A and calculate the number of dominant regions which have the fixed hyperplane as a separating wall; that is, regions where the hyperplane supports a facet of the region and separates the region from the origin.
Section: Proceedings

31. Cofree compositions of coalgebras

Forcey, Stefan ; Lauve, Aaron ; Sottile, Frank.
We develop the notion of the composition of two coalgebras, which arises naturally in higher category theory and the theory of species. We prove that the composition of two cofree coalgebras is cofree and give conditions which imply that the composition is a one-sided Hopf algebra. These conditions hold when one coalgebra is a graded Hopf operad $\mathcal{D}$ and the other is a connected graded coalgebra with coalgebra map to $\mathcal{D}$. We conclude with examples of these structures, where the factor coalgebras have bases indexed by the vertices of multiplihedra, composihedra, and hypercubes.
Section: Proceedings

32. Dissimilarity Vectors of Trees and Their Tropical Linear Spaces (Extended Abstract)

Iriarte Giraldo, Benjamin.
We study the combinatorics of weighted trees from the point of view of tropical algebraic geometry and tropical linear spaces. The set of dissimilarity vectors of weighted trees is contained in the tropical Grassmannian, so we describe here the tropical linear space of a dissimilarity vector and its associated family of matroids. This gives a family of complete flags of tropical linear spaces, where each flag is described by a weighted tree.
Section: Proceedings

33. Algebraic and combinatorial structures on Baxter permutations

Giraudo, Samuele.
We give a new construction of a Hopf subalgebra of the Hopf algebra of Free quasi-symmetric functions whose bases are indexed by objects belonging to the Baxter combinatorial family (\emphi.e. Baxter permutations, pairs of twin binary trees, \emphetc.). This construction relies on the definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid, and on a Robinson-Schensted-like insertion algorithm. The algebraic properties of this Hopf algebra are studied. This Hopf algebra appeared for the first time in the work of Reading [Lattice congruences, fans and Hopf algebras, \textitJournal of Combinatorial Theory Series A, 110:237–273, 2005].
Section: Proceedings

34. The pentagram map and Y-patterns

Glick, Max.
The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map.
Section: Proceedings

35. On the evaluation of the Tutte polynomial at the points (1,-1) and (2,-1)

Goodall, Andrew ; Merino, Criel ; de Mier, Anna ; Noy, Marc.
C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies $t(K_{n+2};2,-1)=t(K_n;1,-1)$. We first give a bijective proof of this identity based on the relationship between the Tutte polynomial and the inversion polynomial for trees. Next we move to our main result, a sufficient condition for a graph G to have two vertices u and v such that $t(G;2,-1)=t(G-\{u,v\};1,-1)$; the condition is satisfied in particular by the class of threshold graphs. Finally, we give a formula for the evaluation of $t(K_{n,m};2,-1)$ involving up-down permutations.
Section: Proceedings

36. Enumeration of minimal 3D polyominoes inscribed in a rectangular prism

Goupil, Alain ; Cloutier, Hugo.
We consider the family of 3D minimal polyominoes inscribed in a rectanglar prism. These objects are polyominos and so they are connected sets of unitary cubic cells inscribed in a given rectangular prism of size $b\times k \times h$ and of minimal volume equal to $b+k+h-2$. They extend the concept of minimal 2D polyominoes inscribed in a rectangle studied in a previous work. Using their geometric structure and elementary combinatorial principles, we construct rational generating functions of minimal 3D polyominoes. We also obtain a number of exact formulas and recurrences for sub-families of these polyominoes.
Section: Proceedings

37. Cyclic sieving phenomenon in non-crossing connected graphs

Guo, Alan.
A non-crossing connected graph is a connected graph on vertices arranged in a circle such that its edges do not cross. The count for such graphs can be made naturally into a q-binomial generating function. We prove that this generating function exhibits the cyclic sieving phenomenon, as conjectured by S.-P. Eu.
Section: Proceedings

38. A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants (condensed version)

Haglund, J..
A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman's formula for the Hilbert series into an explicit polynomial in $q,t$ with integer coefficients. We also provide an equivalent formula for the Hilbert series as the constant term in a multivariate Laurent series.
Section: Proceedings

39. The enumeration of fully commutative affine permutations

Hanusa, Christopher R. H. ; Jones, Brant C..
We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere.
Section: Proceedings

40. Meander Graphs

Heitsch, Christine E. ; Tetali, Prasad.
We consider a Markov chain Monte Carlo approach to the uniform sampling of meanders. Combinatorially, a meander $M = [A:B]$ is formed by two noncrossing perfect matchings, above $A$ and below $B$ the same endpoints, which form a single closed loop. We prove that meanders are connected under appropriate pairs of balanced local moves, one operating on $A$ and the other on $B$. We also prove that the subset of meanders with a fixed $B$ is connected under a suitable local move operating on an appropriately defined meandric triple in $A$. We provide diameter bounds under such moves, tight up to a (worst case) factor of two. The mixing times of the Markov chains remain open.
Section: Proceedings

41. The short toric polynomial

Hetyei, Gábor.
We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes.
Section: Proceedings

42. Combinatorics of k-shapes and Genocchi numbers

Hivert, Florent ; Mallet, Olivier.
In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far.
Section: Proceedings

43. 0-Hecke algebra actions on coinvariants and flags

Huang, Jia.
By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index.
Section: Proceedings

44. The Incidence Hopf Algebra of Graphs

Humpert, Brandon ; Martin, Jeremy L..
The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose basis elements correspond to finite simple graphs and whose Hopf product and coproduct admit simple combinatorial descriptions. We give a new formula for the antipode in the graph algebra in terms of acyclic orientations; our formula contains many fewer terms than Schmitt's more general formula for the antipode in an incidence Hopf algebra. Applications include several formulas (some old and some new) for evaluations of the Tutte polynomial.
Section: Proceedings

45. Bumping algorithm for set-valued shifted tableaux

Ikeda, Takeshi ; Naruse, Hiroshi ; Numata, Yasuhide.
We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions.
Section: Proceedings

46. Counting self-dual interval orders

Jelínek, Vít.
In this paper, we first derive an explicit formula for the generating function that counts unlabeled interval orders (a.k.a. (2+2)-free posets) with respect to several natural statistics, including their size, magnitude, and the number of minimal and maximal elements. In the second part of the paper, we derive a generating function for the number of self-dual unlabeled interval orders, with respect to the same statistics. Our method is based on a bijective correspondence between interval orders and upper-triangular matrices in which each row and column has a positive entry.
Section: Proceedings

47. A reciprocity approach to computing generating functions for permutations with no pattern matches

Jones, Miles Eli ; Remmel, Jeffrey.
In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$.
Section: Proceedings

48. Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity

Josuat-Vergès, Matthieu ; Kim, Jang-Soo.
We give a combinatorial proof of a Touchard-Riordan-like formula discovered by the first author. As a consequence we find a connection between his formula and Jacobi's triple product identity. We then give a combinatorial analog of Jacobi's triple product identity by showing that a finite sum can be interpreted as a generating function of weighted Schröder paths, so that the triple product identity is recovered by taking the limit. This can be stated in terms of some continued fractions called T-fractions, whose important property is the fact that they satisfy some functional equation. We show that this result permits to explain and generalize some Touchard-Riordan-like formulas appearing in enumerative problems.
Section: Proceedings

49. Double homotopy Cohen-Macaulayness for the poset of injective words and the classical NC-partition lattice

Kallipoliti, Myrto ; Kubitzke, Martina.
In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result that those posets are shellable. Both results rely on a new poset fiber theorem, for doubly homotopy Cohen-Macaulay posets, which can be considered as an extension of the classical poset fiber theorem for homotopy Cohen-Macaulay posets.
Section: Proceedings

50. Skew quantum Murnaghan-Nakayama rule

Konvalinka, Matjaž.
In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara's original proof, and one via Lam-Lauve-Sotille's skew Littlewood-Richardson rule.
Section: Proceedings

51. Closed paths whose steps are roots of unity

Labelle, Gilbert ; Lacasse, Annie.
We give explicit formulas for the number $U_n(N)$ of closed polygonal paths of length $N$ (starting from the origin) whose steps are $n^{\textrm{th}}$ roots of unity, as well as asymptotic expressions for these numbers when $N \rightarrow \infty$. We also prove that the sequences $(U_n(N))_{N \geq 0}$ are $P$-recursive for each fixed $n \geq 1$ and leave open the problem of determining the values of $N$ for which the $\textit{dual}$ sequences $(U_n(N))_{n \geq 1}$ are $P$-recursive.
Section: Proceedings

52. Minkowski decompositions of associahedra

Lange, Carsten.
Realisations of associahedra can be obtained from the classical permutahedron by removing some of its facets and the set of facets is determined by the diagonals of certain labeled convex planar $n$-gons as shown by Hohlweg and Lange (2007). Ardila, Benedetti, and Doker (2010) expressed polytopes of this type as Minkowski sums and differences of scaled faces of a standard simplex and computed the corresponding coefficients $y_I$ by Möbius inversion from the $z_I$ if tight right-hand sides $z_I$ for all inequalities of the permutahedron are assumed. Given an associahedron of Hohlweg and Lange, we first characterise all tight values $z_I$ in terms of non-crossing diagonals of the associated labeled $n$-gon, simplify the formula of Ardila et al., and characterise the remaining terms combinatorially.
Section: Proceedings

53. Hierarchical Zonotopal Power Ideals

Lenz, Matthias.
Zonotopal algebra deals with ideals and vector spaces of polynomials that are related to several combinatorial and geometric structures defined by a finite sequence of vectors. Given such a sequence $X$, an integer $k \geq -1$ and an upper set in the lattice of flats of the matroid defined by $X$, we define and study the associated $\textit{hierarchical zonotopal power ideal}$. This ideal is generated by powers of linear forms. Its Hilbert series depends only on the matroid structure of $X$. It is related to various other matroid invariants, $\textit{e. g.}$ the shelling polynomial and the characteristic polynomial. This work unifies and generalizes results by Ardila-Postnikov on power ideals and by Holtz-Ron and Holtz-Ron-Xu on (hierarchical) zonotopal algebra. We also generalize a result on zonotopal Cox modules due to Sturmfels-Xu.
Section: Proceedings

54. Special Cases of the Parking Functions Conjecture and Upper-Triangular Matrices

Levande, Paul.
We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article.
Section: Proceedings

55. Matrices with restricted entries and q-analogues of permutations (extended abstract)

Lewis, Joel Brewster ; Liu, Ricky Ini ; Morales, Alejandro H. ; Panova, Greta ; Sam, Steven V ; Zhang, Yan.
We study the functions that count matrices of given rank over a finite field with specified positions equal to zero. We show that these matrices are $q$-analogues of permutations with certain restricted values. We obtain a simple closed formula for the number of invertible matrices with zero diagonal, a $q$-analogue of derangements, and a curious relationship between invertible skew-symmetric matrices and invertible symmetric matrices with zero diagonal. In addition, we provide recursions to enumerate matrices and symmetric matrices with zero diagonal by rank. Finally, we provide a brief exposition of polynomiality results for enumeration questions related to those mentioned, and give several open questions.
Section: Proceedings

56. Row-strict quasisymmetric Schur functions

Mason, Sarah K ; Remmel, Jeffrey.
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the $\textit{row-strict quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.
Section: Proceedings

57. Kerov's central limit theorem for Schur-Weyl and Gelfand measures (extended abstract)

Méliot, Pierre-Loïc.
We show that the shapes of integer partitions chosen randomly according to Schur-Weyl measures of parameter $\alpha =1/2$ and Gelfand measures satisfy Kerov's central limit theorem. Thus, there is a gaussian process $\Delta$ such that under Plancherel, Schur-Weyl or Gelfand measures, the deviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ converge in law towards $\Delta (s)$, up to a translation along the $x$-axis in the case of Schur-Weyl measures, and up to a factor $\sqrt{2}$ and a deterministic remainder in the case of Gelfand measures. The proofs of these results follow the one given by Ivanov and Olshanski for Plancherel measures; hence, one uses a "method of noncommutative moments''.
Section: Proceedings

58. Bijective evaluation of the connection coefficients of the double coset algebra

Morales, Alejandro H. ; Vassilieva, Ekaterina A..
This paper is devoted to the evaluation of the generating series of the connection coefficients of the double cosets of the hyperoctahedral group. Hanlon, Stanley, Stembridge (1992) showed that this series, indexed by a partition $ν$, gives the spectral distribution of some random matrices that are of interest in random matrix theory. We provide an explicit evaluation of this series when $ν =(n)$ in terms of monomial symmetric functions. Our development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a new bijective construction between partitioned locally orientable hypermaps and some permuted forests.
Section: Proceedings

59. A topological interpretation of the cyclotomic polynomial

Musiker, Gregg ; Reiner, Victor.
We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology.
Section: Proceedings

60. Generalized permutohedra, h-vectors of cotransversal matroids and pure O-sequences (extended abstract)

Oh, Suho.
Stanley has conjectured that the h-vector of a matroid complex is a pure O-sequence. We will prove this for cotransversal matroids by using generalized permutohedra. We construct a bijection between lattice points inside a $r$-dimensional convex polytope and bases of a rank $r$ transversal matroid.
Section: Proceedings

61. Triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ and Tropical Oriented Matroids

Oh, Suho ; Yoo, Hwanchul.
Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes.
Section: Proceedings

62. Stable rigged configurations and Littlewood―Richardson tableaux

Okado, Masato ; Sakamoto, Reiho.
For an affine algebra of nonexceptional type in the large rank we show the fermionic formula depends only on the attachment of the node 0 of the Dynkin diagram to the rest, and the fermionic formula of not type $A$ can be expressed as a sum of that of type $A$ with Littlewood–Richardson coefficients. Combining this result with theorems of Kirillov–Schilling–Shimozono and Lecouvey–Okado–Shimozono, we settle the $X=M$ conjecture under the large rank hypothesis.
Section: Proceedings

63. How often do we reject a superior value? (Extended abstract)

Oliver, Kamilla ; Prodinger, Helmut.
Words $a_1 a_2 \ldots a_n$ with independent letters $a_k$ taken from the set of natural numbers, and a weight (probability) attached via the geometric distribution $pq^{i-1}(p+q=1)$ are considered. A consecutive record (motivated by the analysis of a skip list structure) can only advance from $k$ to $k+1$, thus ignoring perhaps some larger (=superior) values. We investigate the number of these rejected superior values. Further, we study the probability that there is a single consecutive maximum and show that (apart from fluctuations) it tends to a constant.
Section: Proceedings

64. Tableaux and plane partitions of truncated shapes (extended abstract)

Panova, Greta.
We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated by a staircase and a rectangle truncated by a square minus a box. The proofs involve finding the generating function of the corresponding plane partitions using interpretations and formulas for sums of restricted Schur functions and their specializations. The number of standard tableaux is then found as a certain limit of this function.
Section: Proceedings

65. Adjacent transformations in permutations

Pierrot, Adeline ; Rossin, Dominique ; West, Julian.
We continue a study of the equivalence class induced on $S_n$ when one is permitted to replace a consecutive set of elements in a permutation with the same elements in a different order. For each possible set of allowed replacements, we characterise and/or enumerate the set of permutations reachable from the identity. In some cases we also count the number of equivalence classes.
Section: Proceedings

66. The brick polytope of a sorting network

Pilaud, Vincent ; Santos, Francisco.
The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of pseudoline arrangements with contacts supported by a given network. In this paper, we construct the "brick polytope'' of a network, obtained as the convex hull of the "brick vectors'' associated to each pseudoline arrangement supported by the network. We characterize its vertices, describe its faces, and decompose it as a Minkowski sum of simpler polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes of certain well-chosen networks.
Section: Proceedings

67. Cyclic sieving for two families of non-crossing graphs

Poznanović, Svetlana.
We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely, the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded by certain polynomials. Our results confirm two conjectures of Alan Guo.
Section: Proceedings

68. Isotropical Linear Spaces and Valuated Delta-Matroids

Rincón, Felipe.
The spinor variety is cut out by the quadratic Wick relations among the principal Pfaffians of an $n \times n$ skew-symmetric matrix. Its points correspond to $n$-dimensional isotropic subspaces of a $2n$-dimensional vector space. In this paper we tropicalize this picture, and we develop a combinatorial theory of tropical Wick vectors and tropical linear spaces that are tropically isotropic. We characterize tropical Wick vectors in terms of subdivisions of Delta-matroid polytopes, and we examine to what extent the Wick relations form a tropical basis. Our theory generalizes several results for tropical linear spaces and valuated matroids to the class of Coxeter matroids of type $D$.
Section: Proceedings

69. Submaximal factorizations of a Coxeter element in complex reflection groups

Ripoll, Vivien.
When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $NC(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of $W$. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $NC(W)$ as fibers of a "Lyashko-Looijenga covering''. This covering is constructed from the geometry of the discriminant hypersurface of $W$. We deduce new enumeration formulas for certain factorizations of a Coxeter element of $W$.
Section: Proceedings

70. Local extrema in random permutations and the structure of longest alternating subsequences

Romik, Dan.
Let $\textbf{as}_n$ denote the length of a longest alternating subsequence in a uniformly random permutation of order $n$. Stanley studied the distribution of $\textbf{as}_n$ using algebraic methods, and showed in particular that $\mathbb{E}(\textbf{as}_n) = (4n+1)/6$ and $\textrm{Var}(\textbf{as}_n) = (32n-13)/180$. From Stanley's result it can be shown that after rescaling, $\textbf{as}_n$ converges in the limit to the Gaussian distribution. In this extended abstract we present a new approach to the study of $\textbf{as}_n$ by relating it to the sequence of local extrema of a random permutation, which is shown to form a "canonical'' longest alternating subsequence. Using this connection we reprove the abovementioned results in a more probabilistic and transparent way. We also study the distribution of the values of the local minima and maxima, and prove that in the limit the joint distribution of successive minimum-maximum pairs converges to the two-dimensional distribution whose density function is given by $f(s,t) = 3(1-s)t e^{t-s}$.
Section: Proceedings

71. Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs

Rubey, Martin.
We show that maximal 0-1-fillings of moon polynomials, with restricted chain lengths, can be identified with certain rc-graphs, also known as pipe dreams. In particular, this exhibits a connection between maximal 0-1-fillings of Ferrers shapes and Schubert polynomials. Moreover, it entails a bijective proof showing that the number of maximal fillings of a stack polyomino $S$ with no north-east chains longer than $k$ depends only on $k$ and the multiset of column heights of $S$. Our main contribution is a slightly stronger theorem, which in turn leads us to conjecture that the poset of rc-graphs with covering relation given by generalised chute moves is in fact a lattice.
Section: Proceedings

72. Asymptotics of several-partition Hurwitz numbers

Sage, Marc.
We derive in this paper the asymptotics of several-partition Hurwitz numbers, relying on a theorem of Kazarian for the one-partition case and on an induction carried on by Zvonkine. Essentially, the asymptotics for several partitions is the same as the one-partition asymptotics obtained by concatenating the partitions.
Section: Proceedings

73. Demazure crystals and the energy function

Schilling, Anne ; Tingley, Peter.
There is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. For example, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphism intertwines the natural affine grading on Demazure crystals with a combinatorially defined energy function. As a consequence, we obtain a formula of the Demazure character in terms of the energy function, which has applications to nonsymmetric Macdonald polynomials and $q$-deformed Whittaker functions.
Section: Proceedings

74. The equivariant topology of stable Kneser graphs

Schultz, Carsten.
Schrijver introduced the stable Kneser graph $SG_{n,k}, n \geq 1, k \geq 0$. This graph is a vertex critical graph with chromatic number $k+2$, its vertices are certain subsets of a set of cardinality $m=2n+k$. Björner and de Longueville have shown that its box complex is homotopy equivalent to a sphere, $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. The dihedral group $D_{2m}$ acts canonically on $SG_{n,k}$. We study the $D_{2m}$ action on $\mathrm{Hom}(K_2,SG_{n,k})$ and define a corresponding orthogonal action on $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. We establish a close equivariant relationship between the graphs $SG_{n,k}$ and Borsuk graphs of the $k$-sphere and use this together with calculations in the $\mathbb{Z}_2$-cohomology ring of $D_{2m}$ to tell which stable Kneser graphs are test graphs in the sense of Babson and Kozlov. The graphs $SG_{2s,4}$ are test graphs, i.e. for every graph $H$ and $r \geq 0$ such that $\mathrm{Hom}(SG_{2s,4},H)$ is $(r-1)$-connected, the chromatic number $\chi (H)$ is at least $r+6$. On the other hand, if $k \notin \{0,1,2,4,8\}$ and $n \geq N(k)$ then $SG_{n,k}$ is not a homotopy test graph, i.e. there are a graph $G$ and an $r \geq 1$ such that $\mathrm{Hom}(SG_{n,k}, G)$ is $(r-1)$-connected and $\chi (G) < r+k+2$. The latter result also depends on a new necessary criterion for being a test graph, which involves the automorphism group of the graph.
Section: Proceedings

75. Generalized triangulations, pipe dreams, and simplicial spheres

Serrano, Luis ; Stump, Christian.
We exhibit a canonical connection between maximal $(0,1)$-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus a shellable sphere. In particular, this implies a positivity result for Schubert polynomials. For Ferrers shapes, we moreover construct a bijection to maximal fillings avoiding south-east chains of the same length which specializes to a bijection between $k$-triangulations of the $n$-gon and $k$-fans of Dyck paths. Using this, we translate a conjectured cyclic sieving phenomenon for $k$-triangulations with rotation to $k$-flagged tableaux with promotion.
Section: Proceedings

76. A $q$-analog of Ljunggren's binomial congruence

Straub, Armin.
We prove a $q$-analog of a classical binomial congruence due to Ljunggren which states that $\binom{ap}{bp} \equiv \binom{a}{b}$ modulo $p^3$ for primes $p \geq 5$. This congruence subsumes and builds on earlier congruences by Babbage, Wolstenholme and Glaisher for which we recall existing $q$-analogs. Our congruence generalizes an earlier result of Clark.
Section: Proceedings

77. Representations on Hessenberg Varieties and Young's Rule

Teff, Nicholas.
We combinatorially construct the complex cohomology (equivariant and ordinary) of a family of algebraic varieties called regular semisimple Hessenberg varieties. This construction is purely in terms of the Bruhat order on the symmetric group. From this a representation of the symmetric group on the cohomology is defined. This representation generalizes work of Procesi, Stembridge and Tymoczko. Here a partial answer to an open question of Tymoczko is provided in our two main result. The first states, when the variety has multiple connected components, this representation is made up by inducing through a parabolic subgroup of the symmetric group. Using this, our second result obtains, for a special family of varieties, an explicit formula for this representation via Young's rule, giving the multiplicity of the irreducible representations in terms of the classical Kostka numbers.
Section: Proceedings

78. Noncommutative Symmetric Hall-Littlewood Polynomials

Tevlin, Lenny.
Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials.
Section: Proceedings

79. On the monotone hook hafnian conjecture

Visontai, Mirkó.
We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We prove a multivariate generalization of this conjecture for the special case of threshold graphs.
Section: Proceedings

80. Philippe Flajolet, the Father of Analytic Combinatorics

Salvy, Bruno ; Sedgewick, Bob ; Soria, Michèle ; Szpankowski, Wojtek ; Vallée, Brigitte.
Philippe Flajolet, mathematician and computer scientist extraordinaire, suddenly passed away on March 22, 2011, at the prime of his career. He is celebrated for opening new lines of research in analysis of algo- rithms, developing powerful new methods, and solving difficult open problems. His research contributions will have impact for generations, and his approach to research, based on curiosity, a discriminating taste, broad knowledge and interest, intellectual integrity, and a genuine sense of camaraderie, will serve as an inspiration to those who knew him for years to come
Section: Proceedings

81. Supercharacters, symmetric functions in noncommuting variables (extended abstract)

Aguiar, Marcelo ; André, Carlos ; Benedetti, Carolina ; Bergeron, Nantel ; Chen, Zhi ; Diaconis, Persi ; Hendrickson, Anders ; Hsiao, Samuel ; Isaacs, I. Martin ; Jedwab, Andrea et al.
We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.
Section: Proceedings